In situ Raman spectroscopy studies of catalysts
نویسنده
چکیده
In situ Raman spectroscopy is rapidly becoming a very popular catalyst characterization method because Raman cells are being designed that can combine in situ molecular characterization studies with simultaneous fundamental quantitative kinetic studies. The dynamic nature of catalyst surfaces requires that both sets of information be obtained for a complete fundamental understanding of catalytic phenomena under practical reaction conditions. Several examples are chosen to highlight the capabilities of in situ Raman spectroscopy to problems in heterogeneous catalysis: the structural determination of the number of terminal M=O bonds in surface metal oxide species that are present in supported metal oxide catalysts; structural transformations of the MoO3/SiO2 and MoO3/TiO2 supported metal oxide catalysts under various environmental conditions, which contrast the markedly different oxide–oxide interactions in these two catalytic systems; the location and relative reactivity of the different surface M–OCH3 intermediates present during CH3OH oxidation over V2O5/SiO2 catalysts; the different types of atomic oxygen species present in metallic silver catalysts and their role during CH3OH oxidation to H2CO and C2H4 epoxidation to C2H4O; and information about the oxidized and reduced surface metal oxide species, isolated as well as polymerized species, present in supported metal oxide catalysts during reaction conditions. In summary, in situ Raman spectroscopy is a very powerful catalyst characterization technique because it can provide fundamental molecular-level information about catalyst surface structure and reactive surface intermediates under practical reaction conditions.
منابع مشابه
In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy
Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we d...
متن کاملThermally Stable TiO2‐ and SiO2‐Shell‐Isolated Au Nanoparticles for In Situ Plasmon‐Enhanced Raman Spectroscopy of Hydrogenation Catalysts
Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO2 and Au@SiO2 shell-isolated nanoparticles (SHINs) of various sizes were therefore pr...
متن کاملEx-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED
Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...
متن کاملIn Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: O2-O2 Isotopic Labeling Studies
The isothermal isotopic exchange reaction of O2 with 16O of chromium(VI) oxide supported on zirconia, alumina, and titania has been investigated with in situ laser Raman spectroscopy. The isotopic exchange reaction is dependent on the support type, the Cr loading, and the reaction temperature. Complete isotopic exchange of chromium(VI) oxide with O2 is difficult to achieve and requires several ...
متن کاملIn-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites
Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...
متن کامل